In radiation and surgical oncology, AI is playing an increasingly important role by improving the accuracy and precision of treatments. AI-driven tools help to design radiation plans that accurately target cancerous cells while sparing healthy tissue. These systems use complex algorithms to analyze imaging data and calculate optimal treatment regimens. In surgical oncology, robotic systems powered by AI assist surgeons by providing real-time guidance, improving precision during operations. This leads to reduced complications, quicker recovery times, and better overall outcomes, revolutionizing the way cancer is treated and enhancing patient care.
Title : A novel blood-based mRNA genomics technology for cancer diagnosis and treatment
Rajvir Dahiya, University of California San Francisco, United States
Title : tRNA-derived fragment 3′tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer
Feng Yan, The Affiliated Cancer Hospital of Nanjing Medical University, China
Title : Integrating single-cell and spatial transcriptomics to uncover and elucidate GP73-mediated pro-angiogenic regulatory networks in hepatocellular carcinoma
Jiazhou Ye, Guangxi Medical University Cancer Hospital, China
Title : Unveiling the synergism of radiofrequency therapy and graphene nanocomposite in tumor cell viability assay
Paulo Cesar De Morais, Catholic University of Brasilia, Brazil
Title : Analysis of the dynamic evolution and influencing factors of nutritional risk in breast cancer patients during treatment
Jingwen Yan, Sun Yat-sen University, China
Title : Integrative multi-omics reveals metabolic–stemness coupling and novel therapeutic targets in osteosarcoma chemoresistance
Jinyan Feng, Tianjin Medical University Cancer Institute and Hospital, China