AI is revolutionizing personalized cancer treatments by analyzing a patient’s genetic, molecular, and clinical data to create highly tailored therapies. With machine learning algorithms, AI can identify specific mutations in a patient’s tumor and predict which therapies will be most effective. This ensures that patients receive treatments designed to target the unique characteristics of their cancer, enhancing efficacy and minimizing unnecessary side effects. By moving away from a one-size-fits-all approach, AI allows for precision medicine, where therapies are personalized, not only improving treatment outcomes but also significantly boosting survival rates and patient quality of life.
Title : A novel blood-based mRNA genomics technology for cancer diagnosis and treatment
Rajvir Dahiya, University of California San Francisco, United States
Title : tRNA-derived fragment 3′tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer
Feng Yan, The Affiliated Cancer Hospital of Nanjing Medical University, China
Title : Integrating single-cell and spatial transcriptomics to uncover and elucidate GP73-mediated pro-angiogenic regulatory networks in hepatocellular carcinoma
Jiazhou Ye, Guangxi Medical University Cancer Hospital, China
Title : Unveiling the synergism of radiofrequency therapy and graphene nanocomposite in tumor cell viability assay
Paulo Cesar De Morais, Catholic University of Brasilia, Brazil
Title : Analysis of the dynamic evolution and influencing factors of nutritional risk in breast cancer patients during treatment
Jingwen Yan, Sun Yat-sen University, China
Title : Integrative multi-omics reveals metabolic–stemness coupling and novel therapeutic targets in osteosarcoma chemoresistance
Jinyan Feng, Tianjin Medical University Cancer Institute and Hospital, China